# Conics - Parabola

## Everything You Need in One PlaceHomework problems? Exam preparation? Trying to grasp a concept or just brushing up the basics? Our extensive help & practice library have got you covered. | ## Learn and Practice With EaseOur proven video lessons ease you through problems quickly, and you get tonnes of friendly practice on questions that trip students up on tests and finals. | ## Instant and Unlimited HelpOur personalized learning platform enables you to instantly find the exact walkthrough to your specific type of question. Activate unlimited help now! |

#### Make math click 🤔 and get better grades! 💯Join for Free

Get the most by viewing this topic in your current grade. __Pick your course now__.

##### Examples

###### Lessons

**vertical parabola VS. horizontal parabola**

Sketch the following vertical parabolas:

i) $y = {x^2}$

ii) $y = 2{x^2}$

iii) $y = 2{\left( {x + 3} \right)^2} + 1$- Sketch the following horizontal parabolas:

i) $x = {y^2}$

ii) $x = \frac{1}{2}{y^2}$

iii) $x = \frac{1}{2}{\left( {y - 1} \right)^2} - 3$ **converting quadratic functions to vertex form by "completing the square"**

Convert each quadratic function from general form to vertex form by completing the square.**finding the focus and directrix using the formula: $p = \frac{1}{{4a}}$**For each quadratic function, state the:

i) vertex

ii) axis of symmetry

iii) focus

iv) directrix