Power rule

All You Need in One Place

Everything you need for better marks in primary, GCSE, and A-level classes.

Learn with Confidence

We’ve mastered the UK’s national curriculum so you can study with confidence.

Instant and Unlimited Help

24/7 access to the best tips, walkthroughs, and practice questions.

0/12
?
Examples
Lessons
  1. power rule: ddx(xn)=n  xn−1\frac{{d}}{{{d}x}}\left( {{x^n}} \right) = n\;{x^{n - 1}}
    1.   ddx(x5){\;}\frac{{d}}{{{d}x}}\left( {{x^5}} \right)
    2.   ddx(x){\;}\frac{{d}}{{{d}x}}\left( x \right)
    3.   ddx(3){\;}\frac{{d}}{{{d}x}}\left( 3 \right)
  2. constant multiple rule: ddx[cf(x)]=c  ddxf(x)\frac{{d}}{{{d}x}}\left[ {cf\left( x \right)} \right] = c\;\frac{{d}}{{{d}x}}f\left( x \right)
    1.   ddx(4x3){\;}\frac{{d}}{{{d}x}}\left( {4{x^3}} \right)
    2.   ddx(6x){\;}\frac{{d}}{{{d}x}}\left( {6x} \right)
    3.   ddx(−x){\;}\frac{{d}}{{{d}x}}\left( { - x} \right)
  3. ddx(x10−5x7+13x4−20x3+x2−8x−1000)\frac{{d}}{{{d}x}}\left( {{x^{10}} - 5{x^7} + \frac{1}{3}{x^4} - 20{x^3} + {x^2} - 8x - 1000} \right)

    sum rule: ddx[f(x)+g(x)]=ddxf(x)+ddxg(x)\frac{{d}}{{{d}x}}\left[ {f\left( x \right) + g\left( x \right)} \right] = \frac{{d}}{{{d}x}}f\left( x \right) + \frac{{d}}{{{d}x}}g\left( x \right)
    difference rule: ddx[f(x)−g(x)]=ddxf(x)−ddxg(x)\frac{{d}}{{{d}x}}\left[ {f\left( x \right) - g\left( x \right)} \right] = \frac{{d}}{{{d}x}}f\left( x \right) - \frac{{d}}{{{d}x}}g\left( x \right)
    1. negative exponents: 1x=x−1\frac{1}{x} = {x^{ - 1}} and 1xn=x−n\frac{1}{{{x^n}}} = {x^{ - n}}
      1.   ddx(1x2){\;}\frac{{d}}{{{d}x}}\left( {\frac{1}{{{x^2}}}} \right)
      2.   ddx(−53x){\;}\frac{{d}}{{{d}x}}\left( {\frac{{ - 5}}{{3x}}} \right)
    2. rational exponents: x=x12\sqrt x = {x^{\frac{1}{2}}} and bxa=xab{^b}\sqrt{{{x^a}}} = {x^{\frac{a}{b}}}
      1.   ddx(3x5){\;}\frac{{d}}{{{d}x}}\left( {{^3}\sqrt{{{x^5}}}} \right)
      2.   ddx(x){\;}\frac{{d}}{{{d}x}}\left( {\sqrt x } \right)
      3.   ddx(821x3){\;}\frac{{d}}{{{d}x}}\left( {\frac{8}{{21\sqrt {{x^3}} }}} \right)
    Topic Notes
    ?
    When using the Definition of Derivative, finding the derivative of a long polynomial function with large exponents, or powers, can be very demanding. To avoid this, we introduce you one of the most powerful differentiation tools that simplifies this entire differentiation process – the Power Rule. In this section, we will see how the Power Rule allows us to easily derive the slope of a polynomial function at any given point.
    POWER RULE: ddx(xn)=n  xn−1\frac{{d}}{{{d}x}}\left( {{x^n}} \right) = n\;{x^{n - 1}} , where nn is any real number