Inverse reciprocal trigonometric function: finding the exact value

0/1
?
Intros
Lessons
  1. Introduction to Inverse Reciprocal Trigonometric Function: Finding the Exact Value
0/9
?
Examples
Lessons
  1. Application of the Cancellation Laws

    Solve the following inverse trigonometric functions:

    1. sec1(secπ3)\sec^{-1} (\sec \frac{\pi}{3})
    2. cot(cot15)\cot (\cot^{-1} 5)
    3. csc(csc112)\csc (\csc^{-1} \frac{1}{2})
  2. Solving Expressions With One Inverse Trigonometry

    Solve the following inverse trigonometric functions:

    1. csc12\csc^{-1} \sqrt 2
    2. sec113\sec^{-1} \frac{1}{3}
  3. Evaluating Expressions With a Combination of Inverse and Non-Inverse Trigonometry

    Solve the following inverse trigonometric functions:

    1. sec(cot113)\sec (\cot^{-1} \frac{1}{\sqrt 3})
    2. cot(sin113)\cot (\sin^{-1} \frac{1}{3})
    3. csc(arctan3x)\csc (\arctan 3x)
    4. csc(cos1xx2+16)\csc (\cos^{-1} \frac{x}{\sqrt{x^{2} + 16}})
Topic Notes
?

y=cscx  y = \csc x\; [π2-\frac{\pi}{2}, 0) \cup (0, π2\frac{\pi}{2}]

y=secx  y = \sec x\; [0, π2\frac{\pi}{2}) \cup (π2,π\frac{\pi}{2}, \pi]

y=cotx  y = \cot x\; (0, π\pi)

y=csc1x  y = \csc^{-1} x\; (-\infty, -1] \cup [1, \infty)

y=sec1x  y = \sec^{-1} x\; (-\infty, -1] \cup [1, \infty)

y=cot1x  y = \cot^{-1} x\; (-,\infty, \infty)