Vector operations in two dimensions

Get the most by viewing this topic in your current grade. Pick your course now.

  1. Introduction to vector operations in two dimensions
  1. Perform tip-to-tail addition in two dimensions

    A student arrives at school and from the entrance walks 20 m north to go to English. After, they walk 30 m east to physics class. What is their overall displacement? Answer with a vector diagram and a vector equation that describes the displacements.

    1. Solve vector additions graphically

      Solve the following vector equations graphically:

      i. Δd1+Δd2=Δdres\Delta \vec{d}_{1} + \Delta \vec{d}_{2} = \Delta \vec{d}_{res}

      PHYS 1 3 2a

      ii. v1+v2=vres\vec{v}_{1} + \vec{v}_{2} = \vec{v}_{res}

      PHYS 1 3 2b

      iii. A+B+C=D\vec{A} + \vec{B} + \vec{C} = \vec{D}

      PHYS 1 3 2c
      1. Solve vector subtraction, multiplication, and division graphically

        Solve the following vector equations graphically:

        i. Δd1Δd2=Δdres\Delta \vec{d}_{1} - \Delta \vec{d}_{2} = \Delta \vec{d}_{res}

        PHYS 1 3 3b

        ii. 2v1+0.2v2=vres2\vec{v}_{1} + 0.2 \vec{v}_{2} = \vec{v}_{res}

        PHYS 1 3 3c

        iii. A2BC2=D\vec{A} - 2\vec{B} - \frac{\vec{C}}{2} = \vec{D}

        PHYS 1 3 3c
        1. Write and draw the angles of vectors relative to compass directions PHYS 1 3 4

          i. Write the vector using vector notation

          ii. Draw the vector C\vec{C} = 2.5 m [40° S of E] on a set of compass axes.

          1. Calculate two dimensional displacement with Trigonometry

            A car drives at 13.8 m/s [W] for 115 s. It then turns left and travels south at 19.4 m/s for 135 s. Find the displacement of the car from its starting position.