# Tension and pulley problems

## Everything You Need in One PlaceHomework problems? Exam preparation? Trying to grasp a concept or just brushing up the basics? Our extensive help & practice library have got you covered. | ## Learn and Practice With EaseOur proven video lessons ease you through problems quickly, and you get tonnes of friendly practice on questions that trip students up on tests and finals. | ## Instant and Unlimited HelpOur personalized learning platform enables you to instantly find the exact walkthrough to your specific type of question. Activate unlimited help now! |

#### Make math click 🤔 and get better grades! 💯Join for Free

Get the most by viewing this topic in your current grade. __Pick your course now__.

##### Intros

##### Examples

###### Lessons

**Calculating tension using Newton's second law**A train toy is made up of three carts of different masses connected by pieces of string. If string A is pulled with 7.05 N [right], find the tension in strings A, B, and C.

**Solving vertical pulley problems (Atwood machine problems)**Two boxes (5.00 kg and 7.25 kg) are tied together by a rope and hang vertically from a frictionless pulley. What is the acceleration of each box, and the tension in the rope?

**Solving horizontal pulley problems with friction**Two boxes (8.00 kg and 4.40 kg) are tied together by a rope and hang from a pulley as shown. The coefficient of friction between the ground and the 8.00 kg box is 0.250.

**Slope with friction pulley problem using the "black box" method**Two boxes (3.50 kg and 2.00 kg) are tied together by a rope and hang from a pulley as shown. The coefficient of friction between the ground and the 3.50 kg box is 0.150. What is the acceleration of each box, and the tension in the rope?

**Three box pulley problem with slopes and friction using the "black box" method**Three boxes (3.75 kg, 5.50 kg and 12.0 kg) are tied together by two ropes and hang from a pulley as shown. The coefficient of friction between the ground and the boxes is 0.250. What is the acceleration of each box, and the tension in ropes A and B?