Scalars, vectors, and one dimensional motion - Scalars, Vectors and Motion

Scalars, vectors, and one dimensional motion



In this lesson, we will learn:

  • Definition of scalar and vector
  • How to write scalars and vectors in physics
  • The definitions of distance, displacement, speed, and velocity
  • Calculations involving scalars and vectors


  • Scaler: a quantity with a magnitude only

  • Vector:a quantity with magnitude and direction

  • Symbols for vectors can be written with arrows on top (like d\vec{d}), symbols for scalars do not have arrows (like t)
  • Distance, speed, time, and mass are examples of scalars: they do not have a direction.
  • Position, displacement, and velocity are examples of vectors: they do have direction.


Δd\Delta \vec{d}: dfdi\vec{d}_f - \vec{d}_i

Δd:displacement,inmeters(m)\Delta \vec{d}: \mathrm{displacement, \;in\;meters\;(m)}

df:finalposition,inmeters(m)\vec{d}_f: \mathrm{final\;position, \;in\;meters\;(m)}

di:initialposition,inmeters(m)\vec{d}_i: \mathrm{initial\;position,\;in\;meters\;(m)}


v=d/tv = d/t

v:speed,inmeterspersecond(m/s)v:\mathrm{speed, \;in \;meters \;per \;second \;(m/s)}

d:distance,inmeters(m)d:\mathrm{distance, \;in \;meters \;(m)}

t:timeinterval,inseconds(s)t:\mathrm{time \;interval, \;in \;seconds \;(s)}


v=Δd/t\vec{v} = \Delta \vec{d}/t

v:velocity,inmeterspersecond(m/s)\vec{v}: \mathrm{velocity,\;in\;meters\;per\;second\;(m/s)}

  • Intro Lesson
    Introduction to scalars, vectors, and one dimensional motion
Teacher pug

Scalars, vectors, and one dimensional motion

Don't just watch, practice makes perfect.

We have over NaN practice questions in Physics for you to master.