# Elastic and inelastic collisions

##### Intros
###### Lessons
1. Introduction to elastic and inelastic collisions
2. Meaning of elastic and inelastic collisions
3. What happens to kinetic energy in a collision?
4. Understanding perfectly inelastic collisions
##### Examples
###### Lessons
1. Solving word problems with momentum and elastic/inelastic collisions
1. Two cars collide head-on and stick together. The cars are stationary after colliding.
1. Is total momentum conserved?
2. Is total energy conserved?
3. Is the collision elastic or inelastic?

2. Identify each situation as an inelastic or elastic collision.
1. One car crashes into another, bouncing apart with a loud bang.
2. A hammer strikes a piece of steel, bouncing off and producing sparks.
3. A He atom collides with a H atom, bouncing off and maintaining overall kinetic energy.

2. $\bold{\sum\vec{E}_i = \sum\vec{E}_f}$ $\bold{ ; }$ $\bold{\sum\vec{p}_i = \sum\vec{p}_f:}$ Conservation of energy and momentum in elastic and inelastic collisions
1. 3.6×104 kg train car A travelling at 5.40 m/s [E] collides with stationary 5.20×104 kg train car B. The train cars bounce apart, and after the collision, train car A travels at 1.70 m/s [E]. Determine if this collision is elastic or inelastic.
2. 0.50 kg steel ball A travelling [E] with a kinetic energy of 0.49 J collides with stationary 0.75 kg steel ball B head-on. After the collision, ball A travels at 0.28 m/s [W]. Assuming the collision is elastic, find the velocity of ball B after the collision.
3. A "ballistic pendulum" is a method used to measure the velocity of a bullet. A 5.60 g bullet is fired at a 1.24 kg wooden block suspended as shown in the diagram, and the block rises to 0.250 m higher than its initial position at the peak of its swing.
1. Find the velocity of the bullet when it hits the block.
2. Calculate how much of the kinetic energy is lost in this inelastic collision. Explain what happens to this energy.