Power rule

All You Need in One Place

Everything you need for Year 6 maths and science through to Year 13 and beyond.

Learn with Confidence

We’ve mastered the national curriculum to help you secure merit and excellence marks.

Unlimited Help

The best tips, tricks, walkthroughs, and practice questions available.

0/12
?
Examples
Lessons
  1. power rule: ddx(xn)=n  xn1\frac{{d}}{{{d}x}}\left( {{x^n}} \right) = n\;{x^{n - 1}}
    1.   ddx(x5){\;}\frac{{d}}{{{d}x}}\left( {{x^5}} \right)
    2.   ddx(x){\;}\frac{{d}}{{{d}x}}\left( x \right)
    3.   ddx(3){\;}\frac{{d}}{{{d}x}}\left( 3 \right)
  2. constant multiple rule: ddx[cf(x)]=c  ddxf(x)\frac{{d}}{{{d}x}}\left[ {cf\left( x \right)} \right] = c\;\frac{{d}}{{{d}x}}f\left( x \right)
    1.   ddx(4x3){\;}\frac{{d}}{{{d}x}}\left( {4{x^3}} \right)
    2.   ddx(6x){\;}\frac{{d}}{{{d}x}}\left( {6x} \right)
    3.   ddx(x){\;}\frac{{d}}{{{d}x}}\left( { - x} \right)
  3. ddx(x105x7+13x420x3+x28x1000)\frac{{d}}{{{d}x}}\left( {{x^{10}} - 5{x^7} + \frac{1}{3}{x^4} - 20{x^3} + {x^2} - 8x - 1000} \right)

    sum rule: ddx[f(x)+g(x)]=ddxf(x)+ddxg(x)\frac{{d}}{{{d}x}}\left[ {f\left( x \right) + g\left( x \right)} \right] = \frac{{d}}{{{d}x}}f\left( x \right) + \frac{{d}}{{{d}x}}g\left( x \right)
    difference rule: ddx[f(x)g(x)]=ddxf(x)ddxg(x)\frac{{d}}{{{d}x}}\left[ {f\left( x \right) - g\left( x \right)} \right] = \frac{{d}}{{{d}x}}f\left( x \right) - \frac{{d}}{{{d}x}}g\left( x \right)
    1. negative exponents: 1x=x1\frac{1}{x} = {x^{ - 1}} and 1xn=xn\frac{1}{{{x^n}}} = {x^{ - n}}
      1.   ddx(1x2){\;}\frac{{d}}{{{d}x}}\left( {\frac{1}{{{x^2}}}} \right)
      2.   ddx(53x){\;}\frac{{d}}{{{d}x}}\left( {\frac{{ - 5}}{{3x}}} \right)
    2. rational exponents: x=x12\sqrt x = {x^{\frac{1}{2}}} and bxa=xab{^b}\sqrt{{{x^a}}} = {x^{\frac{a}{b}}}
      1.   ddx(3x5){\;}\frac{{d}}{{{d}x}}\left( {{^3}\sqrt{{{x^5}}}} \right)
      2.   ddx(x){\;}\frac{{d}}{{{d}x}}\left( {\sqrt x } \right)
      3.   ddx(821x3){\;}\frac{{d}}{{{d}x}}\left( {\frac{8}{{21\sqrt {{x^3}} }}} \right)
    Topic Notes
    ?
    When using the Definition of Derivative, finding the derivative of a long polynomial function with large exponents, or powers, can be very demanding. To avoid this, we introduce you one of the most powerful differentiation tools that simplifies this entire differentiation process – the Power Rule. In this section, we will see how the Power Rule allows us to easily derive the slope of a polynomial function at any given point.
    POWER RULE: ddx(xn)=n  xn1\frac{{d}}{{{d}x}}\left( {{x^n}} \right) = n\;{x^{n - 1}} , where nn is any real number