0/3
?
Intros
Lessons
  1. Dot Product Overview:
  2. Dot Product and its Special Property
    • Multiplying the corresponding entries, and adding
    • Dot product = 0 \to vectors are perpendicular
  3. Application to Dot Product
    • What is scalar projection? Vector projection
    • Formula for scalar projection: v=abb|v| = \frac{a \cdot b}{|b|}
    • Formula for vector projection v=abbbbv = \frac{a \cdot b}{b \cdot b}b
  4. More Properties of Dot Product
    • Order
    • Length
    • Distribution
    • Scalar
0/6
?
Examples
Lessons
  1. Using the Dot Product
    Find the dot product of u=<1,2,7> u = <-1, -2 , 7> and v=<2,1,2>v = <-2,1,-2> .
    1. Find the dot product of u=<1,5,3>u= <1, -5, -3> and v=<1,1,2>v= <-1, 1, 2>.
      1. Using the Dot Product Property
        Suppose two vectors u=<a,4,3> u = < a, 4, -3> and v=<1,2,3> v=<1, 2, 3> are perpendicular. Find aa.
        1. Finding Scalar and Vector Projections
          Find the scalar and vector projection of BA\vec{BA} onto CA\vec{CA} if A=(1,0,2)A=(1, 0, 2), B=(3,2,1)B=(3, -2, 1) and C=(4,1,5)C=(-4, 1, 5).
          1. Verifying Properties of Dot Product
            Use the two vectors u=<3,1,5>u=<3, 1, 5> and v=<1,4,6>v=<1,4,-6> to show that:

            uu=u2u \cdot u = |u|^2

            1. Use the 3 vectors u=<3,1,5>u=<3, 1, 5>, v=<1,4,6>v=<1,4,-6>, and w=<1,0,3>w=<1, 0, 3> to show that:

              u(v+w)=uv+uwu \cdot (v+w)=u \cdot v+ u \cdot w