- Home
- Trigonometry
- Inverse Trigonometric Functions
Inverse reciprocal trigonometric function: finding the exact value
- Intro Lesson2:18
- Lesson: 1a1:05
- Lesson: 1b0:37
- Lesson: 1c1:12
- Lesson: 2a5:31
- Lesson: 2b1:58
- Lesson: 3a4:24
- Lesson: 3b4:13
- Lesson: 3c4:29
- Lesson: 3d4:08
Inverse reciprocal trigonometric function: finding the exact value
Basic Concepts: Evaluating inverse trigonometric functions, Finding inverse reciprocal trigonometric function from its graph
Lessons
y=cscx [−2π, 0) ∪ (0, 2π]
y=secx [0, 2π) ∪ (2π,π]
y=cotx (0, π)
y=csc−1x (-∞, -1] ∪ [1, ∞)
y=sec−1x (-∞, -1] ∪ [1, ∞)
y=cot−1x (-∞,∞)
- IntroductionIntroduction to Inverse Reciprocal Trigonometric Function: Finding the Exact Value
- 1.Application of the Cancellation Laws
Solve the following inverse trigonometric functions:
a)sec−1(sec3π)b)cot(cot−15)c)csc(csc−121) - 2.Solving Expressions With One Inverse Trigonometry
Solve the following inverse trigonometric functions:
a)csc−12b)sec−131 - 3.Evaluating Expressions With a Combination of Inverse and Non-Inverse Trigonometry
Solve the following inverse trigonometric functions:
a)sec(cot−131)b)cot(sin−131)c)csc(arctan3x)d)csc(cos−1x2+16x)