Triple integrals

All in One Place

Everything you need for JC, LC, and college level maths and science classes.

Learn with Ease

We’ve mastered the national curriculum so that you can revise with confidence.

Instant Help

24/7 access to the best tips, walkthroughs, and practice exercises available.

0/3
?
Intros
Lessons
  1. Triple Integrals Overview:
    • Similar to rectangular regions, but 3D
    • [a,b][a,b] is the xx part
    • [c,d][c,d] is the yy part
    • [e,f][e,f] is the zz part
    • Integral signs are interchangeable
    • An Example
  2. 3 Cases of General Regions
    • Case 1: (x,y)D,h1(x,y)zh2(x,y)(x,y) \in D,h_1(x,y) \leq z \leq h_2(x,y)
    • Case 2: (y,z)D,h1(y,z)xh2(y,z)(y,z)\in D, h_1(y,z) \leq x \leq h_2(y,z)
    • Case 3: (x,z)D,h1(x,z)yh2(x,z)(x,z)\in D, h_1(x,z) \leq y \leq h_2(x,z)
    • An Example
  3. Use of Triple Integrals
    • Finds volume in 3D space
    • An Example
0/5
?
Examples
Lessons
  1. Evaluate

    0212112xy2zdzdydx \int_{0}^{2}\int_{1}^{2}\int_{-1}^{1} 2xy^{2} - zdzdydx
    1. Evaluate

      0π0z0xsinxdydxdz \int_{0}^{\pi}\int_{0}^{z}\int_{0}^{x} sin \, x dydxdz
      1. Finding the Volume of 3D objects
        Use triple integrals to determine the volume of the region below z=2 \, z = 2 \, , above z=1 \, z = 1\, , bounded by y=x21 \, y = x^{2} - 1 \, and y=1x2 \, y = 1 - x^{2}
        1. Evaluating Triple Integrals with Different types of Region E
          Evaluate ExdV \, \int\int\int_{E} \, xd V \, where E \, E \, is the region bounded by z=x2+y22 \, z = x^{2} + y^{2} -2 \, and the plane z=2 \, z = 2 .
          1. Evaluate E2+ydV \, \int\int\int_{E} \, 2 + ydV\, where E \, E \, is the region below xy+3 \, xy + 3 \, above the region z=2 \, z = 2 , and bounded by 0x1,0y1\, 0 \leq x \leq 1, 0 \leq y \leq 1
            Topic Notes
            ?
            Triple Integrals with a Box Region

            If f(x,y,z)f(x,y,z) is continuous on a box region E=[a,b]×[c,d]×[e,f]E=[a,b] \times[c,d] \times [e,f] , then

            Ef(x,y,z)dV=efcdabf(x,y,z)dxdydz \int \int \int_E f(x,y,z) dV = \int^f_e \int^d_c \int^b_a f(x,y,z)dxdydz


            3 Cases of General Regions

            Suppose we are integrating f(x,y,z)f(x,y,z) on region EE. There are 3 cases of finding region EE.

            Case 1: Region EE is

            (x,y)D(x,y) \in D
            h1(x,y)zh2(x,y) h_1(x,y) \leq z \leq h_2(x,y)

            So,

            V=Ef(x,y,z)dV=D[h1(x,y)h2(x,y)f(x,y,z)dz]dAV = \int \int \int_E f(x,y,z)dV = \int \int_D [ \int^{h_2(x,y)}_{h_1(x,y)} f(x,y,z) dz]dA

            Case 2: Region EE is

            (y,z)D(y,z) \in D
            h1(y,z)xh2(y,z) h_1 (y,z) \leq x \leq h_2(y,z)

            So,

            V=Ef(x,y,z)dV=D[h1(y,z)h2(y,z)f(x,y,z)dx]dAV = \int \int \int_E f(x,y,z)dV = \int \int_D [ \int^{h_2(y,z)}_{h_1(y,z)} f(x,y,z) dx]dA

            Case 3: Region EE is

            (x,z)D (x,z) \in D
            h1(x,z)yh2(x,z) h_1 (x,z) \leq y \leq h_2 (x,z)

            So,

            V=Ef(x,y,z)dV=D[h1(x,z)h2(x,z)f(x,y,z)dy]dAV = \int \int \int_E f(x,y,z)dV = \int \int_D [ \int^{h_2(x,z)}_{h_1(x,z)} f(x,y,z) dy]dA


            The Use of Triple Integrals

            The volume of a 3D region EE is given by the triple integral:

            V=EdVV = \int \int \int_E dV