# K_{a} and K_{b} calculations

## Everything You Need in One PlaceHomework problems? Exam preparation? Trying to grasp a concept or just brushing up the basics? Our extensive help & practice library have got you covered. | ## Learn and Practice With EaseOur proven video lessons ease you through problems quickly, and you get tonnes of friendly practice on questions that trip students up on tests and finals. | ## Instant and Unlimited HelpOur personalized learning platform enables you to instantly find the exact walkthrough to your specific type of question. Activate unlimited help now! |

#### Make math click 🤔 and get better grades! 💯Join for Free

##### Intros

###### Lessons

##### Examples

###### Free to Join!

#### Easily See Your Progress

We track the progress you've made on a topic so you know what you've done. From the course view you can easily see what topics have what and the progress you've made on them. Fill the rings to completely master that section or mouse over the icon to see more details.#### Make Use of Our Learning Aids

#### Earn Achievements as You Learn

Make the most of your time as you use StudyPug to help you achieve your goals. Earn fun little badges the more you watch, practice, and use our service.#### Create and Customize Your Avatar

Play with our fun little avatar builder to create and customize your own avatar on StudyPug. Choose your face, eye colour, hair colour and style, and background. Unlock more options the more you use StudyPug.

###### Topic Notes

In this lesson, we will learn:

- How to apply the K
_{a}expression to find the pH of weak acid solutions. - The assumptions made in K
_{a}calculations at equilibrium and how to justify them. - How to solve for K
_{b}using K_{w}and find the pH of weak base solutions.

__Notes:__- We know that weak acids and bases are any acid/base species that does not completely dissociate in water. Dissolving a weak acid in water then has two chemical effects:
- Some of the weak acid, HX, will interact with water and dissociate into H
_{3}O^{+}and X^{-}ions. - The rest of the HX will stay un-dissociated.

HX + H _{2}O $\rightleftharpoons$ H_{3}O^{+}+ Cl^{-}

Start concentration (M)

Equilibrium conc. (M)

HX

A

A - B

H

_{3}O^{+}$\approx$ 0

B

X

^{-}0

B

The acid dissociation constant, K_{a}can be expressed in these terms:*K*= $\frac{[X^{-}][H_3O^+]}{[HX]}$ = $\frac{[X^2]}{[A] -B}$_{a} - Some of the weak acid, HX, will interact with water and dissociate into H
- Taking an example with 0.1M methanoic acid HCOOH, we can write the following:
Start concentration (M)

Equilibrium conc. (M)

HCOOH

0.1

0.1 - B

H

_{3}O^{+}0

B

X

^{-}0

B

We can apply the acid dissociation constant, K_{a}to this equilibrium. Methanoic acid^{1}has a K_{a}value of 1.8$*$10^{-4}so the K_{a}equation can be written fully:*K*= $\frac{[HCOO^-][H_3O^+]}{[HCOOH]}$ = $\frac{[H_3O^+]^2}{[0.1] -[H_3O^+]}$ = 1.8 $*$ 10_{a}^{-4}__Some assumptions are made to complete this calculation__:- The starting concentration of H
_{3}O^{+}ions, in neutral water is only 1*10^{-7}M (see Autoionization of water) and an equally tiny amount of hydroxide ions are also present. This is an incredibly small amount, so this H_{3}O^{+}is not taken into the calculation;__only H___{3}O^{+}__due to the weak acid is used in the calculation__. - With weak acids, we assume that
__the acid is weak enough that the amount of dissociation doesn’t affect acid concentration__. Using the table above, 0.1 M HCOOH added to neutral water will still have concentration of approximately 0.1M at equilibrium, and we can ignore the ‘– B’ in ‘A-B’. Where [HX]_{eq}= equilibrium concentration, [HX]_{i}= start concentration of HX:[HX] _{eq}- B $\cong$ [HX]_{i}__YOU MUST STATE THIS ASSUMPTION IN CALCULATIONS__.

With the assumptions, we have a final expression:*K*= $\frac{[HCOO^-][H_3O^+]}{[HCOOH]}$ = $\frac{[H_3O^+]^2}{[0.1] }$ = 1.8 $*$ 10_{a}^{-4}0.1 $*$ 1.8 $*$ 10 ^{-4}= [H_{3}O^{+}]^{2}$\small\sqrt{1.8 * 10^{-5}}$ = [H _{3}O^{+}] = 4.24 $*$ 10^{-3}*pH*= -log [H_{3}O^{+}] = 2.37

Note that the assumption we made was that [HX] – B is approximately equal to [HX]. We now know that B = 4.24*10^{-3}, so our assumption in this example was to say that 0.1 – 4.24*10^{-3}= 0.0958.__The assumption can be justified if percentage dissociation is less than 5%__which we can work out:

% dissociation = $\frac{[H_3O^+]_{eq}}{[HX]_i}$ $*$ 100

Therefore:

% dissociation = $\frac{[4.24 *10^{-3}]}{[0.1]}$ $*$ 100 = 4.24%

As the calculation shows, the assumption was justified as only 4.24% dissociation occurs. - The starting concentration of H
__K__:_{b}calculations are similar to K_{a}calculations with some changes- Because acidity strength tables give only K
_{a}, K_{b}of a weak base will need to be found by the calculation in the autoionization of water expression. You will need to__find the K__._{a}of the conjugate acid in the acidity strength table to do this - The equilibrium concentrations you obtain
__using K___{b}will give you [OH^{-}], so pH will need to be found by__solving: pH = 14 – pOH__.

Taking an example with 0.5M of the weak base ammonia, NH_{3}, we can write the following:

NH _{3}+ H_{2}O $\rightleftharpoons$ NH_{4}^{+}+ OH^{-}Start concentration (M)

Equilibrium conc. (M)

NH

_{3}0.5

0.5 - B

NH

_{3}^{+}0

B

OH

^{-}0

B

The conjugate acid of ammonia is the ammonium ion, NH_{4}^{+}which has a K_{a}value^{1}of 5.6 $*$ 10^{-10}. Solving the autoionization expression for K_{b}(NH_{3}) gives:*K*= $\frac{K_w}{K_a}$ = $\frac{10^{-14}}{5.6 * 10^{-10}}$ = 1.79 $*$ 10_{b}^{-5}

Using our value for K_{b}(now rounding to 1.8 $*$ 10^{-5}or 2 significant figures) we can solve for the equilibrium concentration of hydroxide ions. Again, we make the assumption that the concentration of NH_{3}isn’t significantly affected by the dissociation into NH_{4}^{+}:[NH _{3}]_{eq}- B $\cong$ [NH_{3}]_{i}

Now we can find the hydroxide ion concentration:*K*= $\frac{[NH_{4}^{+}][OH^-]{}} {[NH_3]}$ = $\frac{[OH^-]^2}{[0.5]}$ = 1.8 $*$ 10_{b}^{-5}[OH ^{-}] = $\sqrt{((1.8 * 10^{-5}) * 0.5)}$ = 3 $*$ 10^{-3}pOH = -log[OH ^{-}] = -log (3 $*$ 10^{-3}) = 2.52pH = 14 - pOH = 14 - 2.52 = 11.48

Testing the assumption can now be done:% dissociation = $\frac{[OH^-]_{eq}}{[NH_3]_i}$ $*$ 100 = $\frac{3 * 10^{-3}}{0.5}$ $*$ 100 = 0.6 %

With only 0.6% dissociation, the assumption is justified and the pH has been found.- Because acidity strength tables give only K
- Another calculation that shows the difference between strong and weak acids and bases is
__the effect of dilution on pH__.__The effect on strong acids is straightforward__, because we assume 100% dissociation:- If a solution of strong acid, e.g. HCl is 1M, then [H
_{3}O^{+}_{ (aq)}] = 1M. Taking the negative log of this:

pH = -log[1] = 0

Diluting this by a factor of 10 will give a concentration of 0.1M

pH = -log[0.1] = 1

A further 10, or 100 fold from the original:

pH = -log[0.01] = 2

In short, diluting a strong acid or base has a direct logarithmic effect on pH.

__The effect of dilution on weak acids and bases is different__:- If a solution of weak acid, e.g. CH
_{3}COOH is 1M, then pH and [H_{3}O^{+}_{ (aq)}] is worked out using the K_{a}expression:

K_{a}(CH_{3}COOH) = 1.4*10^{-5}*K*= $\frac{[H_{3}O^{+}][CH_{3}COO^{-}]}{[CH_{3}COOH]}$_{a}

The calculation to find pH using this expression has been explained above, so moving forward to an answer (using the assumptions needed)1.4 * 10 ^{-5}= $\frac{[H_{3}O^{+}][CH_{3}COO^{-}]}{[1]}$ where [H_{3}O^{+}] = [CH_{3}COOH^{-}]$\sqrt{1.4 * 10^{-5}}$ = [H _{3}O^{+}] = 3.74 * 10^{-3}__pH = -log[ 3.74 * 10__^{-3}__] = 2.42__

A dilution of this weak acid solution to make it 0.1M would have the following effect on the calculation:1.4 * 10 ^{-5}= $\frac{[H_{3}O^{+}][CH_{3}COO^{-}]}{[0.1]}$ where [H_{3}O^{+}] = [CH_{3}COOH^{-}]$\sqrt{1.4 * 10^{-6}}$ = [H _{3}O^{+}] = 1.18 * 10^{-3}__pH = -log[ 1.18 * 10__^{-3}__] = 2.92__

Another dilution by a factor of ten:1.4 * 10 ^{-5}= $\frac{[H_{3}O^{+}][CH_{3}COO^{-}]}{[0.01]}$ where [H_{3}O^{+}] = [CH_{3}COOH^{-}]$\sqrt{1.4 * 10^{-7}}$ = [H _{3}O^{+}] = 3.74 * 10^{-4}__pH = -log[ 3.74 * 10__^{-4}__] = 3.42__

In short, diluting a weak acid has a lesser effect on pH than in strong acids.

- If a solution of strong acid, e.g. HCl is 1M, then [H

remaining today

remaining today