- Home
- AU Essential Maths
- Rational Functions
Graphs of rational functions
- Lesson: 1a10:06
- Lesson: 1b19:33
- Lesson: 1c21:17
- Lesson: 215:00
- Lesson: 3a4:44
- Lesson: 3b4:29
- Lesson: 3c2:35
- Lesson: 3d3:01
- Lesson: 3e3:41
- Lesson: 3f6:11
- Lesson: 3g3:35
- Lesson: 3h3:12
- Lesson: 3i3:58
- Lesson: 3j5:04
Graphs of rational functions
Lessons
- 1.Graphing Rational Functions
Sketch each rational function by determining:
i) vertical asymptote.
ii) horizontal asymptotes
a)f(x)=2x+105b)g(x)=−2x2+3x+25x2−13x+6c)h(x)=20x−100x3 - 2.Graphing Rational Functions Incorporating All 3 Kinds of Asymptotes
Sketch the rational function
f(x)=x+22x2−x−6
by determining:
i) points of discontinuity
ii) vertical asymptotes
iii) horizontal asymptotes
iv) slant asymptote - 3.Identifying Characteristics of Rational Functions
Without sketching the graph, determine the following features for each rational function:
i) point of discontinuity
ii) vertical asymptote
iii) horizontal asymptote
iv) slant asymptote
a)a(x)=x+9x−9b)b(x)=x2+9x2−9c)c(x)=x2−9x2+9d)d(x)=x2−9x+9e)e(x)=x2−9x+3f)f(x)=x+9x2+9g)g(x)=−x2−9−x−9h)h(x)=−x2+9−x2−9i)i(x)=x+3x2−9j)j(x)=x2−3xx3−9x2