Intersection and union of 3 sets

Get the most by viewing this topic in your current grade. Pick your course now.

  1. Introduction to Intersection and Union of 3 Sets:
  2. Intersection and Union of 3 Sets
  3. Principle of Inclusion and Exclusion with 3 Sets
  1. Finding Intersection and Union of 3 Sets

    The Venn Diagram below shows the type of instruments that people like.

    Finding Intersection and Union of 3 Sets

    Find the following:

    1. n((D\cupG)\B)
    2. n((B\cupD)\G)
    3. n(D\capG\capB)
    4. n(D\G\B)
    5. n((D\capG)\cup(G\capB))
  2. Given the following Venn diagram:

    Find a, b, c.

    Circle A,B,A,B, and CC contain the same number of element. Find a,b,a,b, and cc .

    1. Richard surveyed 200 people to see which sports they like. Here is the information that Richard got:

      - 70 people like soccer.

      - 60 people like basketball.

      - 50 people like tennis.

      - 25 people like soccer and basketball, but not tennis

      - 10 people like soccer and tennis, but not basketball.

      - 7 people like basketball and tennis, but not soccer

      - 10 people like all three sports

      How many people don't like any of the sports?

      1. Principle of Inclusion and Exclusion with 3 Sets

        Willy surveyed 76 people for a cake shop. Each person ate at least one of the cakes: strawberry, chocolate and vanilla. Here is the information Willy got:

        - 57 ate strawberry, 50 ate chocolate, and 39 ate vanilla.

        - 20 ate both strawberry and chocolate, but not vanilla.

        - 15 ate strawberry and vanilla, but not chocolate.

        - 5 ate chocolate and vanilla, but not strawberry.

        Who ate all three types of cakes?

        Free to Join!
        StudyPug is a learning help platform covering math and science from grade 4 all the way to second year university. Our video tutorials, unlimited practice problems, and step-by-step explanations provide you or your child with all the help you need to master concepts. On top of that, it's fun - with achievements, customizable avatars, and awards to keep you motivated.
        • Easily See Your Progress

          We track the progress you've made on a topic so you know what you've done. From the course view you can easily see what topics have what and the progress you've made on them. Fill the rings to completely master that section or mouse over the icon to see more details.
        • Make Use of Our Learning Aids

          Last Viewed
          Practice Accuracy
          Suggested Tasks

          Get quick access to the topic you're currently learning.

          See how well your practice sessions are going over time.

          Stay on track with our daily recommendations.

        • Earn Achievements as You Learn

          Make the most of your time as you use StudyPug to help you achieve your goals. Earn fun little badges the more you watch, practice, and use our service.
        • Create and Customize Your Avatar

          Play with our fun little avatar builder to create and customize your own avatar on StudyPug. Choose your face, eye colour, hair colour and style, and background. Unlock more options the more you use StudyPug.
        Topic Notes

        The principle of inclusion and exclusion of 3 sets says the following:

        n(A\cupB\cupC) = n(A) + n(B) + n(C) - n(A\capB) - n(B\capC) - n(A\capC) + n(A\capB\capC)