Function notation

Function notation

Function notation is another way to express the y value of a function. Therefore, when graphing, we can always label the y-axis as f(x) too. It might look confusing, but let us show you how to deal with it.

Lessons

  • 1.
    Introduction to function notations

  • 2.
    If f(x)=5x2x+6 f(x) = 5x^2-x+6 find the following
    a)
    f(){f(\heartsuit)}

    b)
    f(θ){f(\theta)}

    c)
    f(3){f(3)}

    d)
    f(1){f(-1)}

    e)
    f(3x){f(3x)}

    f)
    f(x){f(-x)}

    g)
    f(3x4){f(3x-4)}

    h)
    3f(x){3f(x)}

    i)
    f(x)3{f(x)-3}


  • 3.
    If f(x) = 6 - 4x, find:
    a)
    f(3)

    b)
    f(-8)

    c)
    f(-2/5)


  • 4.
    If f(r) = 2πr2h2\pi r^2h, find f(x+2)

  • 5.
    If f(x)=x,{f(x) = \sqrt{x},} write the following in terms of the function f.{f.}
    a)
    x+5{\sqrt{x}+5}

    b)
    x+5{\sqrt{x+5}}

    c)
    2x3{\sqrt{2x-3}}

    d)
    8x{-8\sqrt{x}}

    e)
    82x3{-8\sqrt{2x-3}}

    f)
    4x5+914\sqrt{x^{5}+9}-1


  • 6.
    If f(x) = -3x + 7, solve for x if f(x) = -15

  • 7.
    The temperature below the crust of the Earth is given by C(d) = 12d + 30, where C is in Celsius and d is in km.
    i.) Find the temperature 15 km below the crust of the Earth.
    ii.) What depth has a temperature of 186 186^\circ C?