Still Confused?

Try reviewing these fundamentals first.

Still Confused?

Try reviewing these fundamentals first.

Still Confused?

Try reviewing these fundamentals first.

Nope, I got it.

That's that last lesson.

Start now and get better math marks!

Get Started NowStart now and get better math marks!

Get Started NowStart now and get better math marks!

Get Started NowStart now and get better math marks!

Get Started Now- Lesson: 123:30
- Lesson: 2a10:02
- Lesson: 2b16:25
- Lesson: 3a16:39
- Lesson: 3b14:30
- Lesson: 3c27:23
- Lesson: 411:07

The Binomial Theorem is another method to help us expand binomials in a faster manner. It is particularly useful when we work on binomial expansions that involve binomials raised to high powers.

- 1.Expand ${\left( {a + b} \right)^4}$, using:a)Pascal’s Triangleb)Binomial Theorem
- 2.Expand:a)${\left( {5x + 2} \right)^3}$b)${\left( {2x - 3y} \right)^4}$
- 3.In the expansion of ${\left( {\frac{1}{{7{x^2}}} - {x^3}} \right)^{10}}$ , determine:a)the 4th termb)the middle termc)the constant term
- 4.In the expansion of ${\left( {3 - 2x} \right)^8}$ , determine the coefficient of the term containing ${X^5}$.

9.

Polynomials

9.1

Characteristics of polynomials

9.2

Adding and subtracting polynomials

9.3

Multiplying polynomial by polynomial

9.4

Polynomial long division

9.5

Polynomial synthetic division

9.6

Remainder theorem

9.7

Rational zeroes theorem

9.8

Characteristics of polynomial graphs

9.9

Repeated factors (Multiplicities) in polynomials

9.10

Imaginary zeros of polynomials

9.11

Determining the equation of a polynomial function

9.12

Pascal's triangle

9.13

Binomial theorem

9.14

What is a polynomial function?

9.15

Applications of polynomial functions

9.16

Solving polynomial inequalities

9.17

Fundamental theorem of algebra

9.18

Descartes’ rule of signs

We have over 1060 practice questions in Algebra 2 for you to master.

Get Started Now