2.6 What is a polynomial function?
What is a polynomial function?
Lessons

a)
$f\left( x \right) = {x^4} + 7{x^3}  8{x^2} + 5$

b)
$f\left( x \right) = 34{x^2}  25{x^3} + 2x  39$

c)
$P\left( x \right) = 7$


a)
$f\left( x \right) =  5{x^3} + {x^{\frac{1}{2}}}  4$

b)
$f\left( x \right) = 2{x^2}  7{x^{  1}}  3$

c)
$f\left( x \right) = {x^4} + 9029{x^3}  \sqrt {17} {x^2} + 3897$

d)
$f\left( x \right) = \sqrt {5{x^3}}  3{x^2} + 2x  4$

e)
$f\left( x \right) = 5{x^3} = \sqrt {3{x^2}} + 2x  4$

f)
$f\left( x \right) = \sqrt 3 {x^3}  \sqrt {  3} x$


a)
Finish the table below.
Polynomial Function
Degree
Type
$P\left( x \right) = c$
$P\left( x \right) = ax + b$, $a \ne 0$
$P\left( x \right) = 4a + bx + c$, $a \ne 0$
$P\left( x \right) = a{x^3} + b{x^2} + cx + d$, $a \ne 0$
$P\left( x \right) = a{x^4} + b{x^3} + c{x^2} + {d}x + {e}$, $a \ne 0$

b)
What are the names of polynomials of degrees of five through ten?
