Still Confused?

Try reviewing these fundamentals first.

- Home
- UK Year 10 Maths
- Factorising Polynomial Expressions

Still Confused?

Try reviewing these fundamentals first.

Still Confused?

Try reviewing these fundamentals first.

Nope, I got it.

That's that last lesson.

Start now and get better math marks!

Get Started NowStart now and get better math marks!

Get Started NowStart now and get better math marks!

Get Started NowStart now and get better math marks!

Get Started Now- Lesson: 1a1:31
- Lesson: 1b2:00

Similar to the previous section, we will be using trinomial factoring too. Just this time, we are going to look for the constant term in the polynomials instead. The trick is to reverse the process of FOIL so that we can convert the trinomials into two binomials.

Related concepts: Factor by taking out the greatest common factor, Factor by grouping, Factoring difference of squares: $x^2 - y^2$, Factoring trinomials,

- 1.Find positive and negative examples for ka)${x^2-5x+k}$b)${x^2+6x+k}$

22.

Factorising Polynomial Expressions

22.1

Common factors of polynomials

22.2

Factorising polynomials by grouping

22.3

Solving polynomials with the unknown "b" from $x^2 + bx + c$

22.4

Solving polynomials with the unknown "c" from $x^2 + bx + c$

22.5

Factorising polynomials: $x^2 + bx + c$

22.6

Applications of polynomials: $x^2 + bx + c$

22.7

Solving polynomials with the unknown "b" from $ax^2 + bx + c$

22.8

Factorising polynomials: $ax^2 + bx + c$

22.9

Factorising perfect square trinomials: $(a + b)^2 = a^2 + 2ab + b^2$ or $(a - b)^2 = a^2 - 2ab + b^2$

22.10

Find the difference of squares: $(a - b)(a + b) = (a^2 - b^2)$

22.11

Evaluating polynomials

22.12

Using algebra tiles to solve polynomials

22.13

Solving polynomial equations

22.14

Word problems of polynomials

We have over 1410 practice questions in UK Year 10 Maths for you to master.

Get Started Now22.1

Common factors of polynomials

22.2

Factorising polynomials by grouping

22.3

Solving polynomials with the unknown "b" from $x^2 + bx + c$

22.4

Solving polynomials with the unknown "c" from $x^2 + bx + c$

22.5

Factorising polynomials: $x^2 + bx + c$

22.6

Applications of polynomials: $x^2 + bx + c$

22.7

Solving polynomials with the unknown "b" from $ax^2 + bx + c$

22.8

Factorising polynomials: $ax^2 + bx + c$

22.9

Factorising perfect square trinomials: $(a + b)^2 = a^2 + 2ab + b^2$ or $(a - b)^2 = a^2 - 2ab + b^2$

22.10

Find the difference of squares: $(a - b)(a + b) = (a^2 - b^2)$

22.11

Evaluating polynomials

22.13

Solving polynomial equations

22.14

Word problems of polynomials