# Negative binomial distribution

##### Intros

###### Lessons

##### Examples

###### Lessons

**Identifying Negative Binomial Distributions**

Identify which of the following experiments below are negative binomial distributions?

i. A fair coin is flipped until head comes up 4 times. What is the probability that the coin will be flipped exactly 6 times?

ii. Cards are drawn out of a deck until 2 exactly aces are drawn. What is the probability that a total of 10 cards will be drawn?

iii. An urn contains 3 red balls and 2 black balls. If 2 balls are drawn with replacement what is the probability that 1 of them will be black?

iv. Roll a die until the first six comes up. What is the probability that this will take 3 rolls?**Determining the Negative Binomial Distribution**

A fair coin is flipped until head comes up 4 times. What is the probability that the coin will be flipped exactly 6 times?**Determining the Cumulative Negative Binomial Distribution**

A sculptor is making 3 exhibits for an art gallery. There is a probability of 0.75 that every piece of wood she carves into will be good enough to be part of the exhibit. What is the probability that she uses 4 pieces of wood or less?

###### Free to Join!

StudyPug is a learning help platform covering math and science from grade 4 all the way to second year university. Our video tutorials, unlimited practice problems, and step-by-step explanations provide you or your child with all the help you need to master concepts. On top of that, it's fun — with achievements, customizable avatars, and awards to keep you motivated.

#### Easily See Your Progress

We track the progress you've made on a topic so you know what you've done. From the course view you can easily see what topics have what and the progress you've made on them. Fill the rings to completely master that section or mouse over the icon to see more details.#### Make Use of Our Learning Aids

#### Earn Achievements as You Learn

Make the most of your time as you use StudyPug to help you achieve your goals. Earn fun little badges the more you watch, practice, and use our service.#### Create and Customize Your Avatar

Play with our fun little avatar builder to create and customize your own avatar on StudyPug. Choose your face, eye colour, hair colour and style, and background. Unlock more options the more you use StudyPug.

###### Topic Notes

## Negative binomial distribution

When studying the different discrete probability distributions that exist in statistical analysis you will find that some of them share many characteristics and seem to respond to the same problem just with a few shifted things. This is the case for the difference between the binomial and the negative binomial distribution that we will talk about today.

For that, let us go back a little bit and recall what a binomial distribution is, and from that, on the second section of this lesson we will study what the negative version of it is.

#### What is a binomial distribution?

A binomial probability distribution is a discrete probability distribution which can have two possible outcomes: either a success or a failure; this kind of distribution shows the possible successful results to occur in a series of finite trials and so, the possible outcomes just range between yes and no (did the expected outcome happened? Or did it not?), or true and false, or anything that refers to an event being a success for our result expectation or a failure.

The general probability formula of a binomial distribution (which can be sometimes simply referred as the binomial distribution formula), is defined as follows:

Where:

$n$ = number of trials

$x$ = number of successes in $n$ trials

$p$ = probability of success in each trial

$_{n}C_{x} =$ $\large \frac{n!}{x!(n-x)!}$ = number of success outcomes

$P(x)$ = probability of getting $x$ successes out of $n$ trials

When studying a discrete random variable x and it has a binomial distribution, we are looking for the number of successes in a certain amount of trials. In order to be sure that our statistical experiment is based on such a discrete distribution, there are a few conditions it must meet:

- The experiment has a fixed number of trials. And so, the value of $n$ is defined.
- Each trial has only two possible outcomes, the result is either a success or a failure.
- The probability of success for each individual trial is equal.

This last condition is the result of what we call running the trials with replacement, meaning that all of the possible outcomes of the first attempt, are kept for the second, third and nth attempt. No matter how many trials are run, every single one has the same amount and equal possible outcomes, meaning that its probability of success remains the same throughout all of the trials.

#### Negative binomial distribution

While the binomial distribution is concerned on studying the number of successes in a certain amount of trials, the negative binomial distribution studies the amount of runs in the experiments that have to pass so a certain number of successes occur. Just as in the binomial distribution, the negative binomial distribution has only two possible outcomes in each trial: either a success or a failure.

Just as the binomial distribution, the negative binomial distribution has certain conditions:

- There are only two possible outcomes for each trial in the experiment.
- The probability of success in each trial is constant, in other words, it doesnt matter how many trials are run in the experiment, the value of the probability of success in each is the same.
- There is a set number of trials to run in the experiment, and each of these trials is independent from the others.

With that in mind, the negative binomial distribution equation for probability is defined as

Where:

$n$ = number of trials

$x$ = number of successes in n trials

$p$ = probability of success in each trial

$_{(n-1)}C_{(x-1)} =$ $\large \frac{(n-1)!}{(x-1)!(n-x)!}$ = probability combinations for successes

$P(x)$ = probability of getting $x$ successes out of $n$ trials

Do not confuse the probability of the negative binomial distribution thinking this means the probabilities calculated are negative! There is no such thing as a negative probability! This distribution has the word negative on its name given the nature of the perspective by which the problem is looked at, kind of a backwards perspective when comparing it to the binomial distribution, and thus the name.

#### Negative binomial distribution examples

Using the negative binomial definition as presented above, let us work through a few examples to gain practice:

__Example 1__

We start with an example focused on knowing when you have negative binomial distributions presented to you. And so, identify which of the following experiments below are negative binomial distributions, we recommend you to use the three conditions mentioned on our last section, plus figure 1, so you do not confuse them with simple binomial distributions.
**$\quad$ A fair coin is flipped until head comes up 4 times. What is the probability that the coin will be flipped exactly 6 times?**

**$\quad$ Cards are drawn out of a deck until 2 exactly aces are drawn. What is the probability that a total of 10 cards will be drawn?**

**$\quad$ An urn contains 3 red balls and 2 black balls. If 2 balls are drawn with replacement what is the probability that 1 of them will be black?**

**$\quad$Roll a die until the first six comes up. What is the probability that this will take 3 rolls?**

__Example 2__

On this negative binomial example we focus on calculating the distribution using the equation for the probability defined in equation 2.
A fair coin is flipped until head comes up 4 times. What is the probability that the coin will be flipped exactly 6 times?

For this case we have that:

$n = 6,$ number of times the coin will be flipped.

$x = 4,$ number of successes we want.

$p = 0.5,$ the probability of success in each trial must be one half since there are 50% chances a particular face comes up when flipping a coin.

$(1-p) = 1 - 0.5 = 0.5$ which makes sense, since there are 50% chances of success in each flip, there are 50% chances of a failure in each flip.

And so, we calculate the probability that the coin will be flipped 6 times and we will obtain 4 successes:

Therefore, there are 15.625% chances of flipping a coin six times and obtaining four successes on that run.

__Example 3__

Determining the Cumulative Negative Binomial Distribution
A sculptor is making 3 pieces to exhibit at an art gallery. There is a probability of 0.75 that every piece of wood she carves into will be good enough to be part of the exhibit. What is the probability that she uses 4 pieces of wood or less in order to produce the 3 final to exhibit at the gallery?

For this case we have that:

$n \leq 4,$ number of pieces of wood she will use to obtain the final carved pieces to exhibit..

$x = 3,$ number of successes we want.

$p = 0.75,$ the probability of each carved piece to be part of the sculptors exhibit.

$(1-p) = 1 - 0.75 = 0.25 \,$ is the probability of a piece not to be used in an exhibit.

In this case it is important to note that n cannot have a value of zero, actually, it cannot have a value smaller than three since the sculptor MUST use at least one piece of wood to produce one piece of art. Therefore n is less or equal to 4, but is higher than 3 for this case.

And so, we calculate the cumulative probability, for using four pieces of wood or less, which means that we have to add the probabilities of the sculptor using three and four pieces of wood:

Therefore, we calculate the probability for the different values of $n$ separately:

Therefore the final result for the probability is:

So now that you have learned the negative binomial distribution definition and worked through a few problems, you are ready for the last discrete probability distribution we will see in this course: the hypergeometric distribution.

But before that, let us recommend you some other study materials: on this negative binomial distribution lecture you can find an example for negative binomial variance and mean. On this lesson on the hypergeometric and negative binomial distributions you can see the relationship between these two and the simple binomial distribution, and their differences, such lesson can serve as an introduction to our next one.

And so, this is it for today, we hope you enjoyed this lesson, and see you in the next one!.

• Negative Binomial Distribution: $P(n)=_{(n-1)}C_{(x-1)}p^x(1-p)^{n-x}$

$n$: number of trials

$x$: number of success in n trials

$p$: probability of success in each trial

$P(n)$: probability of getting the $x$ success on the $n^{th}$ trial

$n$: number of trials

$x$: number of success in n trials

$p$: probability of success in each trial

$P(n)$: probability of getting the $x$ success on the $n^{th}$ trial

2

videos

remaining today

remaining today

5

practice questions

remaining today

remaining today