Everything You Need in One Place

Homework problems? Exam preparation? Trying to grasp a concept or just brushing up the basics? Our extensive help & practice library have got you covered.

Learn and Practice With Ease

Our proven video lessons ease you through problems quickly, and you get tonnes of friendly practice on questions that trip students up on tests and finals.

Instant and Unlimited Help

Our personalized learning platform enables you to instantly find the exact walkthrough to your specific type of question. Activate unlimited help now!

0/1
?
Intros
Lessons
  1. Integral Test Overview
0/5
?
Examples
Lessons
  1. P Series versus Integral test
    Use the integral test instead of the p-series test to show that the series converge or diverge.
    1. n=13n2\sum_{n=1}^{\infty}\frac{3}{n^2}
    2. n=11n\sum_{n=1}^{\infty}\frac{1}{n}
  2. Convergence/Divergence of Integral Test
    Determine whether the following series converge or diverge using the integral test.
    1. n=32(5n+4)5\sum_{n=3}^{\infty}\frac{2}{(5n+4)^5}
    2. n=11n2+7n+12\sum_{n=1}^{\infty}\frac{1}{n^2+7n+12}
  3. Advanced Question Regarding to the Integral Test
    Determine if the series k=21k  3ln(4k)\sum_{k=2}^{\infty}\frac{1}{k\ \ {^3}\sqrt{ln(4k)}} converges or diverges.
    Topic Notes
    ?
    In this section, we will learn about another test called the Integral test. The idea is to take the general term as a function in terms of x, and then integrate it. You can only use this test if the function is positively decreasing. If the integral gives a finite value, then the series is convergent. If the integral diverges to infinity, then the series is also divergent. We will first do some questions that require you to use the integral test instead of p-series test. Then we will use the integral test on a complicated series to see if it converges or diverges.
    Note *The integral test states the following:
    If f(x)=anf(x)=a_n and f(x)f(x) is a continuous, positive decreasing function from [i,][i,\infty], then we can say that:
    1. If if(x)dx\int_{i}^{\infty}f(x)dx is convergent, then the series n=ian\sum_{n=i}^{\infty}a_n is also convergent.
    2. If if(x)dx\int_{i}^{\infty}f(x)dx is divergent, then the series n=ian\sum_{n=i}^{\infty}a_n is also divergent.