Circles and circumference

Everything You Need in One Place

Homework problems? Exam preparation? Trying to grasp a concept or just brushing up the basics? Our extensive help & practice library have got you covered.

Learn and Practice With Ease

Our proven video lessons ease you through problems quickly, and you get tonnes of friendly practice on questions that trip students up on tests and finals.

Instant and Unlimited Help

Our personalized learning platform enables you to instantly find the exact walkthrough to your specific type of question. Activate unlimited help now!

Get the most by viewing this topic in your current grade. Pick your course now.

  1. Terms related to circles
    • Radius
    • Diameter
    • Circumference
    • Central angle
      • minor arc
      • major arc
    • Inscribed angle
    • Chord
      • perpendicular bisector
    • Tangent
      • point of tangency
  1. Find the circumferences of the following circles.

    1. Circles, radius, and circumference

    2. what is the circumference of the circle given the radius

    3. Circles, diameter, and circumference
  2. Find the radius (r).

    1. Radius of circles

    2. Circles and radius

    3. Finding the radius of circles given circumference

    4. Circles and circumference
  3. CD\overline {CD} and CE\overline {CE} are radii of circle C.
    Find diameter and circumference of circles
    1. If CD = 15 cm, what is CE?
    2. If DF is the diameter of circle C, find its length.
    3. Find the circumference of circle C.
  4. Find the circumference of the circle.
    Circles and circumference
    1. The wheels of David's bicycle have a radius of 9 inches. How far has David traveled if the wheels have made 120 revolutions?
      Free to Join!
      StudyPug is a learning help platform covering math and science from grade 4 all the way to second year university. Our video tutorials, unlimited practice problems, and step-by-step explanations provide you or your child with all the help you need to master concepts. On top of that, it's fun - with achievements, customizable avatars, and awards to keep you motivated.
      • Easily See Your Progress

        We track the progress you've made on a topic so you know what you've done. From the course view you can easily see what topics have what and the progress you've made on them. Fill the rings to completely master that section or mouse over the icon to see more details.
      • Make Use of Our Learning Aids

        Last Viewed
        Practice Accuracy
        Suggested Tasks

        Get quick access to the topic you're currently learning.

        See how well your practice sessions are going over time.

        Stay on track with our daily recommendations.

      • Earn Achievements as You Learn

        Make the most of your time as you use StudyPug to help you achieve your goals. Earn fun little badges the more you watch, practice, and use our service.
      • Create and Customize Your Avatar

        Play with our fun little avatar builder to create and customize your own avatar on StudyPug. Choose your face, eye colour, hair colour and style, and background. Unlock more options the more you use StudyPug.
      Topic Notes

      Formula for circumference

      What exactly is the circumference of a circle? It's actually defined as the length of the edge surrounding a circle, that is, the perimeter of a circle. We need to use π\pi to help us find the circumference. The formula for finding the circumference includes the diameter, and looks like this:  

      C = π\pid

      To make this easier, we can also find the circumference if we know the radius of a circle. We know that the diameter is equalled to 2r (2 times the radius), so in other words, the formula for a circle's circumference is:

      C = 2π\pir

      Either of these circumference formulas can be used to help you solve problems.


      How to find the circumference of a circle

      We'll do a three examples to help you learn how to find the circumference of a circle using the formulas we just learned.



      Find the circumference of the following circle:

      Circles, radius, and circumference
      Circles, radius, and circumference


      C = 2π\pir
      C = 2π\pi(7)

      C = 43.98cm


      In this example, we are given a circle, with only one of its characteristics given to us. The 7cm is the measurement of the line from the center of the circle to its edge, which is, in other words, the radius of the circle. Luckily, we have a circumference formula to help us out when we know the radius: C = 2π\pir. Simply by substituting in r with 7, we're able to find that the circumference is 43.98cm.


      Find the circumference of the following circle:

      what is the circumference of the circle given the radius
      What is the circumference of the circle given the radius


      C = 2π\pir
      C = 2π\pi(8½)

      C = 53.41m


      Once again in this example, we're given the radius of the circle. Although it's not a clean number like our previous example, but we can still simply plug the number directly into the formula like what we did above. Be aware of the units that this circle's radius is given in and remember to give your final answer in the same unit. In this question, we find that the circumference is equalled to 53.41m.  


      Find the circumference of the following circle:

      Circles, diameter, and circumference
      Circles, diameter, and circumference


      C = π\pid
      C = π\pi(17)

      C = 53.41m


      In this example, we aren't given the radius. We're given the distance across a circle through its center, which is also called the diameter of a circle. Again, referring back to the two equations we can use to calculate a circle's circumference, we find that one of them simply uses C = π\pid. When we substitute "d" with 17, we find that we'll get the answer of 53.41m.


      An interesting point to note is that you can still use the other formula for finding the circumference that uses the radius. All we have to do is first change the diameter into a radius. We know that the diameter is 2 times the radius, so therefore, we can divide 17 by 2 to find the radius of 8.5 You can see that this number is actually the same one as the radius given in the previous circle, and therefore, we get the same answer when we use the C = 2π\pir formula.


      Generally, it's easier to use whichever formula corresponds with the characteristics of the circle you are given. However, if you're unable to remember both of the formulas, you can always manipulate the info you're given so that it fits into the formula you do remember.


      Feel free to play around with this online circle calculator to see how the circumference changes as the diameter and radius changes.