Derivative of exponential functions

Derivative of exponential functions

An exponential function is a function containing a numerical base with at least one variable in its exponent. In this section, we will learn how to differentiate exponential functions, including natural exponential functions and other composite functions that require the application of the Chain Rule.


Differential Rules – Exponential Functions

ddxcx=cxlnc\frac{{d}}{{{d}x}}\;{c^x} = {c^x} \cdot \ln c
ddxc()=c()lncddx()\frac{{d}}{{{d}x}}\;{c^{\left( {\;\;\;\;} \right)}} = {c^{\left( {\;\;\;\;} \right)}} \cdot \ln c \cdot \frac{{d}}{{{d}x}}\left( {\;\;\;\;} \right)

ddxex=ex\frac{{d}}{{{d}x}}\;{{e}^x} = {{e}^x}
ddxe()=e()ddx()\frac{{d}}{{{d}x}}\;{{e}^{\left( {\;\;\;\;} \right)}} = {{e}^{\left( {\;\;\;\;} \right)}} \cdot \frac{{d}}{{{d}x}}\left( {\;\;\;\;} \right)
Teacher pug

Derivative of exponential functions

Don't just watch, practice makes perfect.

We have over 570 practice questions in Calculus 1 for you to master.