Limit laws - Limits

Limit laws

Lessons

Notes:
Here are some properties of limits:

1) limxax=a\lim_{x \to a} x = a
2) limxac=c\lim_{x \to a} c = c
3) limxa[cf(x)]=climxaf(x)\lim_{x \to a} [cf(x)] = c\lim_{x \to a}f(x)
4) limxa[f(x)±g(x)]=limxaf(x)±limxag(x)\lim_{x \to a} [f(x) \pm g(x)] = \lim_{x \to a}f(x) \pm \lim_{x \to a}g(x)
5) limxa[f(x)g(x)]=limxaf(x)limxag(x)\lim_{x \to a} [f(x) g(x)] = \lim_{x \to a}f(x) \lim_{x \to a}g(x)
6) limxaf(x)g(x)=limxaf(x)limxag(x)\lim_{x \to a} \frac{f(x)}{g(x)} = \frac{\lim_{x \to a}f(x)}{\lim_{x \to a}g(x)}, only if limxag(x)0\lim_{x \to a}g(x) \neq0
7) limxa[f(x)]n=[limxaf(x)]n\lim_{x \to a} [f(x)]^n=[\lim_{x \to a}f(x)]^n

Where c is a constant, limxaf(x)\lim_{x \to a} f(x) and limxag(x)\lim_{x \to a} g(x) exist.

Here is a fact that may be useful to you.
If P(x)P(x) is a polynomial, then
limxaP(x)=P(a)\lim_{x \to a} P(x)=P(a)
  • 1.
    Evaluating Limits of Functions
    Evaluate the following limits using the property of limits:
  • 2.
    Evaluating Limits with specific limits given
    Given that limx5f(x)=3\lim_{x \to 5} f(x)=-3, limx5g(x)=5\lim_{x \to 5} g(x)=5, limx5h(x)=2\lim_{x \to 5} h(x)=2, use the limit properties to compute the following limits:
Teacher pug

Limit laws

Don't just watch, practice makes perfect.

We have over 350 practice questions in Calculus for you to master.