Derivative of logarithmic functions - Derivatives

Derivative of logarithmic functions

A log function is the inverse of an exponential function. In this section, we will learn how to find the derivative of logarithmic functions, including log functions with arbitrary base and natural log functions.

Lessons

Notes:
ddxlogbx=1xlnb\frac{{d}}{{{d}x}}\;{lo}{{g}_b}\;x = \frac{1}{{x \cdot \;\ln b\;}}
ddxlogb()=1()lnbddx()\frac{{d}}{{{d}x}}\;{lo}{{g}_b}\left( {\;\;\;\;} \right) = \frac{1}{{\left( {\;\;\;\;} \right)\; \cdot \;\ln b}} \cdot \frac{{d}}{{{d}x}}\left( {\;\;\;\;} \right)


ddxInx=1x\frac{{d}}{{{d}x}}\;{In}x = \frac{1}{x}
ddxIn()=1()ddx()\frac{{d}}{{{d}x}}\;{In}\left( {\;\;\;\;} \right) = \frac{1}{{\left( {\;\;\;\;} \right)}} \cdot \frac{{d}}{{{d}x}}\left( {\;\;\;\;} \right)
Teacher pug

Derivative of logarithmic functions

Don't just watch, practice makes perfect.

We have over 350 practice questions in Calculus for you to master.