Derivative of exponential functions

Derivative of exponential functions

An exponential function is a function containing a numerical base with at least one variable in its exponent. In this section, we will learn how to differentiate exponential functions, including natural exponential functions and other composite functions that require the application of the Chain Rule.

Lessons

Notes:
Differential Rules – Exponential Functions

ddxcx=cxlnc\frac{{d}}{{{d}x}}\;{c^x} = {c^x} \cdot \ln c
ddxc()=c()lncddx()\frac{{d}}{{{d}x}}\;{c^{\left( {\;\;\;\;} \right)}} = {c^{\left( {\;\;\;\;} \right)}} \cdot \ln c \cdot \frac{{d}}{{{d}x}}\left( {\;\;\;\;} \right)


ddxex=ex\frac{{d}}{{{d}x}}\;{{e}^x} = {{e}^x}
ddxe()=e()ddx()\frac{{d}}{{{d}x}}\;{{e}^{\left( {\;\;\;\;} \right)}} = {{e}^{\left( {\;\;\;\;} \right)}} \cdot \frac{{d}}{{{d}x}}\left( {\;\;\;\;} \right)
Teacher pug

Derivative of exponential functions

Don't just watch, practice makes perfect.

We have over 1270 practice questions in AU Maths Methods for you to master.