1. Home
  2. Algebra
  3. Rational Functions

Horizontal asymptote - Rational Functions

Horizontal asymptote

Lessons

Notes:

There are 3 cases to consider when determining horizontal asymptotes:

1) Case 1:

if: degree of numerator < degree of denominator

then: horizontal asymptote: y = 0 (x-axis)

i.e.f(x)=ax3+......bx5+......i.e. f(x) = \frac{ax^{3}+......}{bx^{5}+......} → horizontal asymptote: y=0y = 0

2) Case 2:

if: degree of numerator = degree of denominator

then: horizontal asymptote: y = leadingcoefficientofnumeratorleadingcoefficientofdenominator\frac{leading\; coefficient \;of\; numerator}{leading\; coefficient\; of\; denominator}

i.e.f(x)=ax5+......bx5+......i.e. f(x) = \frac{ax^{5}+......}{bx^{5}+......} → horizontal asymptote: y=aby = \frac{a}{b}

3) Case 3:

if: degree of numerator > degree of denominator

then: horizontal asymptote: NONE

i.e.f(x)=ax5+......bx3+......i.e. f(x) = \frac{ax^{5}+......}{bx^{3}+......} NOhorizontalasymptote NO\; horizontal\; asymptote

Teacher pug

Horizontal asymptote

Don't just watch, practice makes perfect.

We have over 1800 practice questions in Algebra for you to master.