Exponents: Division rule ${a^x \over a^y}=a^{(x-y)}$ - Exponents
Exponents: Division rule ${a^x \over a^y}=a^{(x-y)}$
Basic concepts:
- Quotient rule of exponents
Related concepts:
- Quotient rule
1.
Introduction to Exponents
2.
Using exponents to describe numbers
3.
Exponent rules
4.
Order of operations with exponents
5.
Using exponents to solve problems
6.
Product rule of exponents
7.
Quotient rule of exponents
8.
Power of a product rule
9.
Power of a quotient rule
10.
Power of a power rule
11.
Negative exponent rule
12.
Combining the exponent rules
13.
Scientific notation
14.
Solving for exponents
15.
Exponents: Product rule $(a^x)(a^y)=a^{(x+y)}$
16.
Exponents: Division rule ${a^x \over a^y}=a^{(x-y)}$
17.
Exponents: Power rule $(a^x)^y = a^{(x\cdot y)}$
18.
Exponents: Negative exponents
19.
Exponents: Zero exponent: $a^0 = 1$
20.
Exponents: Rational exponents
1.
Introduction to Exponents
2.
Using exponents to describe numbers
3.
Exponent rules
4.
Order of operations with exponents
5.
Using exponents to solve problems
6.
Product rule of exponents
7.
Quotient rule of exponents
8.
Power of a product rule
9.
Power of a quotient rule
10.
Power of a power rule
11.
Negative exponent rule
12.
Combining the exponent rules
13.
Scientific notation
14.
Solving for exponents
15.
Exponents: Product rule $(a^x)(a^y)=a^{(x+y)}$
16.
Exponents: Division rule ${a^x \over a^y}=a^{(x-y)}$
17.
Exponents: Power rule $(a^x)^y = a^{(x\cdot y)}$
18.
Exponents: Negative exponents
19.
Exponents: Zero exponent: $a^0 = 1$
20.
Exponents: Rational exponents