Find the angle it makes in the complex plane in radians

Given the complex number $w=5i-3$

Find its modulus

Find its argument in radians

Given that a complex number $w$ makes an angle $\theta=\frac{3\pi}{4}$ in the complex plane and has an absolute value $|w|=5$, write the complex number w in rectangular form.

Free to Join!

StudyPug is a learning help platform covering math and science from grade 4 all the way to second year university. Our video tutorials, unlimited practice problems, and step-by-step explanations provide you or your child with all the help you need to master concepts. On top of that, it's fun — with achievements, customizable avatars, and awards to keep you motivated.

We track the progress you've made on a topic so you know what you've done. From the course view you can easily see what topics have what and the progress you've made on them. Fill the rings to completely master that section or mouse over the icon to see more details.

Make Use of Our Learning Aids

Last Viewed

Practice Accuracy

Suggested Tasks

Get quick access to the topic you're currently learning.

See how well your practice sessions are going over time.

Make the most of your time as you use StudyPug to help you achieve your goals. Earn fun little badges the more you watch, practice, and use our service.

Create and Customize Your Avatar

Play with our fun little avatar builder to create and customize your own avatar on StudyPug. Choose your face, eye colour, hair colour and style, and background. Unlock more options the more you use StudyPug.

There are times when we are interested in obtaining a better understanding of the properties of a complex number, such as its argument and modulus. In this section, we will learn how to calculate the argument, also known as the angle, and the modulus, also known as the magnitude or the absolute value, of a complex number.

Notes:

Magnitude = modulus = absolute value $|z|= \sqrt{a^2+b^2}$